Investigation of Ti-doped NaAlH₄ by solid-state NMR ### Julie L. Herberg, Robert S. Maxwell, Chemistry and Material Science Directorate Lawrence Livermore National Laboratory, Livermore, CA 94550 ### Eric H. Majzoub, Department of Analytical Material Science Sandia National Laboratories, Livermore, CA 94550 ### Tina M. Nenoff Chemical and Biological Technologies Sandia National Laboratories, Albuquerque, NM 87185 ### Introduction #### Importance of H₂ Storage Technology Hydrogen Storage / H₂ fuel cells are part of President Bush's initiative to reverse America's growing dependence on foreign oil by developing new energy technologies: - Overcome key technical and cost barriers for fuel cells Hydrogen fuel will help ensure America's energy [independence - Fuel cells will improve air quality and reduce greenhouse gas emissions - Hydrogen is the key to a clean energy future To compete with foreign oil as an energy source, we need to produce storage and transportation of hydrogen at or above 62 kg H_2/m^3 , which is the target set by DOE for the transportation sector --- Current technology falls short of this target Current Hydrogen Storage Materials #### **Metal Hydride Systems** - Metal hydride-nickel hydroxide cells and lithium cells - Readily absorb large quantities of H₂ at relatively low pressures - High gravimetric and volumetric energy density to meet the high demands of hydrogen - storage for fuel cells (lower efficiency) - **Chemical Hydrides** - NaAlH₄, when doped with Ti³⁺, has low gravimetric and volumetric energy density and hydrogen incorporation of ~5 wt. % of H₂ #### **Carbon-based Materials** - Carbon Nanotubes and Nanofibers - Activated Carbons - Graphite Intercalation Compounds (K⁺) - Graphite-Metal Composites (Mg-Ni-C systems) Properties of NaAlH₄ doped with titanium, - 5.0 wt.% hydrogen can be repeatedly cycled through absorption / desorption - rapid dehydriding occurs at temperatures Decomposition Phases of NaAlH₄ NaAlH_e - rehydriding only takes 15 min. - it is low cost (\$70/kg) zirconium, and other catalysts ### NaAlH₄ as a Material for Hydrogen Storage ### Important qualities of hydrogen storage materials used for commercial vehicular applications - high gravimetric hydrogen density - hydrogen dissociation energetics - long-term cyclability - low cost Crystal Structure of NaAlH₄ From both Rietveld refinement of X-ray and neutron powder diffraction data, the NaAlH₄ single crystal structure is revealed. - spacegroup: I4₁/a - a = 5.02 Angstroms - c = 11.33 Angstroms ■ 1.25 g/cc - $0.092 \text{ g H/cc} \left(\text{ liq H}_2 \, 0.07 \, \text{g/cc} \right)$ 0.387 - **Transformation Steps** • NaAlH₄ \rightarrow 1/3 Na₃AlH + 2/3Al + H₂ 3.7 wt. % $NaAlH_{4}$ ■ NaAlH₆ \longrightarrow 3NaH + Al + 3/2 H₂ ■ Total reversible weight: **5.6 wt.%** • 3 H's per formula unit between the undoped NaAlH₄ and the Ti doped NaAlH₄? X-ray Diffraction Data for NaAlH₄ with TiCl₃ and pure NaAlH₄ #### Abstract In recent years, the development of Ti-doped NaAlH₄ as a hydrogen storage material has gained attention because of its large weight percentage of hydrogen (\sim 5 %), compared to traditional interstitial hydrides. The addition of transition-metal dopants, in the form of Ti-halides, such as TiCl₃, dramatically improve the kinetics of the absorption and desorption of hydrogen from NaAlH₄. X-ray diffraction studies of Sun et al. [1] have suggested that Ti may be substituting into bulk NaAlH₄. These authors, as well as others, have suggested that the Ti is present as Ti³⁺. Desorption kinetics studies by Majzoub et al. [2] have further suggested that the resultant Ti valence state is independent of the precursor Ti-halide used for doping. However, the role that Ti plays in enhancing the absorption and desorption of H₂ is still unknown. In the present study, ²⁷Al, ²³Na, and ¹H MAS NMR have been performed to understand the structural impact that Ti has on the bulk NaAlH₄ material. All experiments were performed with pure NaAlH₄ and NaAlH₄ doped with Ti to fully understand how the Ti impacts this complex network. ²⁷Al-¹H and ²³Na-¹H double resonance experiments were performed to understand structural changes that occur with the addition of the Ti-precursor. Also, T₁, T₂, and multiple quantum ¹H NMR experiments were performed to gather insight into the structure and dynamics of ¹H [1] D. Sun, T. Kiyobayashi, H.T. Takeshita, N. Kuriyama, C.M. Jensen, J. Alloys Comp. 337 (2002) L8-L11 # Experimental Data ## NMR can provide detailed understanding of: - Structural influence of metal incorporation - Hydrogen speciation - Mode of hydrogen interaction (chemi- or physisorbed) - Release / reversibility mechanisms We are using NMR methods to examine the structure and dynamics of metal hydride H₂ storage systems. within Ti-doped NaAlH₄. [2] E. H. Majzoub, K.J. Gross, J. Alloys Comp., 1 (2003) in press # Description of samples | Fast dried NaAlH ₄ | - 1M of NaAlH₄ dried in THF and vacuum annealed in 10⁻⁶ torr - dried fast - possible more mobile hydrogen | |--|---| | Crushed Crystal
NaAlH ₄ | -crushed single crystals - no Ti³⁺ present - low mobility of hydrogen | | Ti doped NaAlH ₄ | -Ti definitely present during crystal formation | | (NaAlH ₄) ₁₁₂ + (TiCl ₃) ₄ | -NaAlH₄ is prepared in a TiCl₃ solution - lots of hydrogen mobility | ¹H, ²³Na, and ²⁷Al NMR of NaAlH₄ All spectra were acquired at 11.75T with 12kHz MAS #### Conclusions #### ¹H NMR Spectra - Fast dried NaAlH₄, crushed crystal NaAlH₄, and Ti doped NaAlH₄ ¹H NMR spectra show a broad peak, representing more clustered hydrogen, and two narrow peaks, representing less clustered hydrogen. - $(NaAlH_4)_{112}$ + $(TiCl_3)_4$ ¹H NMR spectra show a narrowing of the broad peak with the addition of Ti, which might indicate more mobile hydrogen. ### ²³Na NMR Spectra - Fast dried NaAlH₄, crushed crystal NaAlH₄, and Ti doped NaAlH₄ ²³Na NMR spectra show a peak at -17ppm with FWHM of 1.9ppm. - $(NaAlH_4)_{112}$ + $(TiCl_3)_4$ ²³Na NMR spectra has four peaks: - □ 1) at 0ppm with a FWHM of 2.3ppm, which represents NaCl₃ - □ 2) at -17ppm with a FWHM of 1.9ppm, which represents NaAlH₄ - □ 3) & 4) at 15ppm and 12ppm with a FWHM of 1.7ppm and - □ 2.9ppm respectively, which potentially represents NaAlH₄- ### ²⁷Al NMR spectra - Fast dried NaAlH₄, crushed crystal NaAlH₄, and Ti doped NaAlH₄ ²⁷Al NMR spectra show a peak at 90ppm with a FWHM of 16ppm. - $(NaAlH_4)_{112}$ + $(TiCl_3)_4$ ²⁷Al NMR spectra show a peak at -42ppm with a FWHM of 3ppm. The narrowing of this lineshape might indicate that the aluminum is mobile with the addition of Ti. Ti-doped NaAlH₄ is being developed at Sandia National Laboratories as a leading metal hydride material and is an ideal material to analyze the effects of small amounts of metals being incorporated into porous materials, being developed at LLNL. #### Future Experiments - 1. To understand the dynamical differences in the different materials, we will measure T_1 , spin-lattice relaxation time, and T_2 , spin-spin relaxation time verses temperature. - 2. To understand the difference in ¹H-²³Na and ¹H-²⁷Al bonding mechanism for each materials, we will perform ¹H-²³Na and ¹H-²⁷Al double resonance experiments - 3. To further understand ¹H NMR spectra and how protons are clustered within a sample, we will perform multiple quantum experiments. 4. We will uses these series of experiments to analyze metalcontaining organic and carbon aerogels for H₂ storage under the guidance of J. Satcher and T. Baumann. These material are an attractive candidates for H₂ storage due to high surface areas and open porosities. Theoretically, carbon materials have a 16 wt.% capacity to store hydrogen, which surpasses any other metal hydrogen system currently used as a hydrogen storage material. Metallic nanoparticles form during carbonization process: Particle size: 5 to 60 nm 1wt.% Cu Cu³⁺-loaded Organic Aerogels (Pre-carbonized) Cu-loaded Carbon Aerogels